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The theoretical basis of the isoinversion principle
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The theoretical basis of  the isoinversion principle is discussed in terms of  the temperature dependence of
absolute rate constants. This description gives an insight into the origin and physical meaning of  the terms
‘inversion temperature’ and ‘transition region’. The consequences of  quantitative interpretation of  non-
linear Eyring plots are discussed.

Introduction
Selectivity and catalysis are highly important topics in synthetic
organic chemistry. Whereas progress in the development of new
stereo-, regio- and chemo-selective methods has already been
made in many areas, there is still a need for new concepts, which
enable us to understand the reaction mechanisms and also sim-
plify the optimization of such processes.

The lead structure for synthetically useful catalysts is nor-
mally found by intuition. The optimization of the selectivities is
performed by trial and error variation of the ligand structure
and/or the reaction conditions. Rational design combines trial
and error methods with molecular modelling of intermediates
or transition states in the catalytic cycles. The catalytic cycles
are very complex and it is in most cases not known whether the
postulated intermediates are really relevant for the selectivity in
the catalytic cycle.

Temperature dependent measurements on the basis of the
Eyring theory allow the evaluation of reactions in terms of the
activation enthalpies and entropies without the need of know-
ing the structure of transition states.

The isoinversion principle (IIP) is a deductive kinetic model,
which has found widespread application by organic chemists
since its introduction in 1989 by Scharf and co-workers.1 Since
then it has been used for both the optimization of selectivities
and rationalization of reaction mechanisms in several stoi-
chiometric and catalytic asymmetric reactions.2–7 The isoinver-
sion principle describes kinetically controlled reactions which
show a temperature dependent change in the rate-determining
step. In this paper we will focus on reactions which have a pre-
equilibrium step, but the results given are also applicable to
reactions undergoing a temperature dependent change in the
mechanism.

The basic kinetic scheme is depicted in Scheme 1, which is

Scheme 1 Basic kinetic scheme of the isoinversion principle
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not only applicable to stoichiometric reactions, but to catalytic
reactions (Michaelis–Menten kinetics) as well.

At the ‘first selection level’ two diastereomeric intermediates
{E*B}1 and {E*B}2 are formed from the prochiral starting
material B and a chiral substrate E* (Scheme 1). At the ‘second
selection level’ competition between conversion of the inter-
mediates to the products (P1* and P2*) and then reversion to the
starting materials (E* and B) can modify the initial selection
event. By temperature variation the stereoselectivity can be
either increased or decreased depending on constructive or
destructive interaction of the two selection levels. Experi-
mentally non-linear Eyring behaviour is observed in this case if
a change in the rate-determining step occurs in the temperature
window under investigation. Note that a linear plot does not
necessarily imply that the reaction under investigation is
proceeding on one ‘selection level’, since the deviation from
linearity could be very small and, therefore, experimentally
undetectable.

In the experimental temperature range the Eyring plots
generally consist of two apparently linear regions intersecting
at the inversion point Tinv, which can either be a distinct
extremum or a breaking point (Fig. 1). The region to the left of
the inversion point is the high temperature region, the region to
the right the low temperature region. According to the formal-
ism of the IIP, the activation parameters ∆∆H i

‡ and ∆∆S i
‡ are

determined from the slope and intercept of each of the two
lines, respectively. A mathematical treatment of Scheme 1 has
shown that this first-order approximation does not necessarily
lead to the determination of the correct activation parameters
because of a transition region in which none of the single steps
in the mechanism is rate determining.8,9

Nevertheless a better solution for a quantitative treatment of
temperature dependent measurements has not yet been
advanced. We will discuss the non-linearity of relative rate plots

Fig. 1 Non-linear Eyring plots



940 J. Chem. Soc., Perkin Trans. 2, 1997

Fig. 2 Origin of non-linear relative rate Eyring plots based on the non-linearity of the corresponding absolute rate plots

Fig. 3 Origin of non-linear relative rate Eyring plots based on the non-linearity of the corresponding absolute rate plots

in terms of the non-linearity of at least one of the correspond-
ing Eyring plots for the absolute rates, a phenomenon which
has been known and understood for a long time.10

Results and discussion
The combination of a linear and a non-linear absolute rate
Eyring plot gives a non-linear Eyring plot for the relative rates.
Depending on the extent of curvature of the non-linear plot
and whether the non-linear pathway is faster or slower than the
linear one, curves with distinct maxima or minima can result
(Fig. 2).

The general case, where both of the absolute rate plots are
curved (Fig. 3) is considered next. The starting materials should
react by a common mechanism, so that the curvatures in both
plots are either both concave up or concave down. In this case, in
the plots for the relative rates, not just maxima and minima can
be realized, but also concave up or concave down curvatures.

Concave up plots in absolute rate studies indicate a change in
the reaction mechanism, concave down plots show a reaction
proceeding on a pathway with a pre-equilibrium (Fig. 4).10

Inversion temperature for absolute rates
The rate law applicable to Scheme 1 for each of the two reaction
channels is given in eqn. (1), where kij are the rate constants for
the elementary steps and kobs is the observed overall rate
constant.

d[Pi]

dt
= k3i[{E*B}i] =

k1ik3i[B][E*]

(k2i 1 k3i)
= kobs,i[B][E*] (1)

The two limiting conditions for this rate expression corre-
spond to a change in the rate-determining step [eqn. (2)], which
can be achieved by a variation in the reaction temperature.

lim
k2i

k3i

= 0 → kobs,i = k1i (2a)

lim
k3i

k2i

= 0 → kobs,i =
k1ik3i

k2i

(2b)

Fig. 4 Possible curvatures in non-linear Eyring plots



J. Chem. Soc., Perkin Trans. 2, 1997 941

The activation parameters for the limiting cases are given in
eqn. (3).

lim
k2i

k3i

= 0 → ∆H ‡
lt,i = ∆H li

‡; ∆S ‡
lt,i = ∆S li

‡ (3a)

lim
k3i

k2i

= 0 → ∆H ‡
ht,i = ∆H1i

‡ 1 ∆H ‡
3i 2 ∆H‡

2i;

∆S ‡
ht,i = ∆S ‡

1i 1 ∆S ‡
3i 2 ∆S ‡

2i (3b)

Combining ∆H ‡
2i and ∆H ‡

3i leads to eqn (4).

lim
k3i

k2i

= 0 → ∆H ‡
ht,i = ∆H ‡

1i 2 δ∆H ‡
i ;

∆S ‡
ht,i = ∆S ‡

1i 2 δ∆S i
‡ (4)

The two lines corresponding to the equations which describe
the limiting conditions computed by Ridd 8,9 intersect at a single
point [eqn. (5)] in an Eyring plot, whose abscissa value is the

T abs
inv,i =

∆H ‡
3i 2 ∆H ‡

2i

∆S ‡
3i 2 ∆S ‡

2i

=
δ∆H i

‡

δ∆S i
‡

(5)

inversion temperature for the absolute rates, where ∆G ‡ (first
selection level) = ∆G ‡ (second selection level).

At the inversion point the influence of the two selection levels
just cancels so a change in the dominance of one step over the
other occurs by going from one of the limiting conditions to the
other.8,9

The value of the inversion temperature is independent of the
activation parameters of the first selection level (represented by
the activation parameters ∆H ‡

1i and ∆S ‡
1i). The first selection level

still has an influence on the amount of curvature in the so called
‘transition region’ (vide infra). The analogous method by
Scharf and co-workers 3 applied to relative rate plots does not
necessarily give the correct inversion point,9,10 but here no prob-
lems arise since the absolute rate plots generally are monotonic.
Two limiting conditions also apply to eqn. (5) in the cases where
either the numerator or the denominator approach zero. This
leads to T abs

inv,i = 0 and infinity, respectively. The rate-determining
step does not change, which corresponds to a reaction proceed-
ing on just one selection level. Negative inversion temperatures,
which obviously have no simple physical meaning are rational-
ized this way as well.

The transition region
Usually neither limiting condition is achieved in the direct vicin-
ity of the inversion point. This led to the proposal of the ‘transi-
tion region’ where neither of the two rate-limiting steps of
the two selection levels is rate determining.8.9 The width of the
transition region can be calculated in the following way:
for a change in the rate-determining step the ratio k2i/k3i must
pass unity. To fulfill the limiting conditions we assume that
k2i/k3i changes from n to 1/n [eqn. (6)].

k2i

k3i

=
n

1
: ln n = 2

δ∆H i
‡

RTlim 1,i

1
δ∆S i

‡

R
(6a)

k2i

k3i

=
n

1
:2ln n = 2

δ∆H i
‡

RTlim 2,i

1
δ∆S i

‡

R
(6b)

Choosing a typical inversion temperature, e.g. 250 K, allows
computation of the width of the transition region as a function
of the activation parameters (Table 1), where n is a measure of
the confidence level for the fit between the plot and its linear
approximation.

This transition region can be rather broad and, even in the

case of very high reaction entropy differences, it is in the order
of the experimentally accessible temperature range. So the
experimentally determined Eyring plots are generally not made
up of the lines corresponding to two different rate-determining
steps, but will contain influences of the transition region.

Inversion temperature for relative rates
If  the inversion temperatures of the absolute rates are identical
for two corresponding reaction paths, the inversion temper-
ature for the relative rates is equal to those for the absolute
rates. Also, if  only one of the absolute rate plots shows a break,
the isoinversion temperature equals its inversion temperature.

In the case of unequal inversion temperatures for the abso-
lute rates, the inversion temperature for the relative rates has to
be somewhere in between those for the absolute rates. It can
be formally computed according to eqn. (7).

∫
Trel

inv

Tinv,1

∆G1
‡ dS1

T
D = ∫

Tinv,2

Trel
inv

∆G2
‡ dS1

T
D (7)

The influence of the activation parameters of the two reac-
tion pathways compensate for each other, if  the change in ∆G i

‡

for each pathway i with respect to the reciprocal temperature is
identical. The physical meaning of the inversion temperature
T rel

inv still remains dubious in this case. Therefore the compen-
sation in the absolute rates for each of the reaction pathways is
more important. We predict correlations for each path itself  if
δ∆H i

‡ vs. δ∆S i
‡ is plotted, showing the compensation phenom-

enon in the absolute rates rather than the relative rates (Fig. 5).

Curve shapes as a function of different inversion temperatures
and transition widths
Since it is plausible but by no means proven that the inversion
temperatures for both reaction channels of a stereo- or chemo-
selective reaction are identical or at least very similar, it is useful
to discuss the shape of the resulting Eyring plots in terms of the

Fig. 5 Isoinversion relationship for the absolute rates

Table 1 Dependence of transition region widths and limits on activ-
ation parameters

δ∆H ‡/
kJ mol21

δ∆S ‡/
J mol21 K21

Tlim.1/
K a

Tlim,2/
K a

∆Ttrans/
K b

5
10
15
20
25
30

20
40
60
80

100
120

150
187
204
214
220
225

755
376
322
300
289
281

606
188
117
86
68
56

a Tlim,1, Tlim,2; lower and upper limit of the transition region. b ∆Ttrans;
width of the transition region, n = 5.
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Table 2 Activation parameters, inversion temperatures and transition regions for Figs. 6–8

∆S ‡
11/ ∆S ‡

12/ ∆H ‡
11/ ∆H ‡

12/ δ∆S ‡
1 / δ∆S ‡

2 / δ∆H ‡
1 / δ∆H ‡

2 /
J mol21

K21
J mol21

K21
kJ
mol21

kJ
mol21

J mol21

K21
J mol21

K21
kJ
mol21

kJ
mol21

Tinv,1/
K

Tinv,2/
K

Tlim1,1/
K

Tlim2,1/
K

Tlim1,2/
K

Tlim2,2/
K

A 290 290 36 43 40 60 10 15 250 250 187 376 204 322
B 285 270 36 43 40 60 10 12 250 200 187 376 164 257
C 290 290 43 43 60 40 15 4.8 250 120 204 322 90 180

inversion temperature and the transition region widths (see
Fig. 7).

Example A shows identical inversion temperatures for both
reaction channels, but different transition region widths.
Unequal inversion temperatures with overlapping transition
region widths (example B) are an intermediate case leading to
example C where neither inversion temperature is in the transi-
tion region of the other reaction channel. The lines correspond-
ing to the limiting conditions are given by the straight lines in
each of the plots Figs. 6–8. The activation parameters, inversion
temperatures and transition regions for Figs. 6–8 are given in
Table 2. In Fig. 8, the low temperature limit corresponds to the
abscissa.

For example A the inversion point for the relative rates is at
the same temperature as the inversion temperature for the abso-
lute rates. Furthermore, the transition region will be as large as
the larger one in the two absolute rate plots (Fig. 6). The inver-
sion point can be determined correctly from this plot also by
the first-order approximation mentioned above (the inversion
point is at the intersection point of the lines for the two limiting
conditions), but quantitative estimates of the activation param-
eters are still problematic due to the deviations of the linear and
the non-linear fits shown in Fig. 4.

Example B shows different inversion points for the two com-
peting pathways, but overlapping transition regions. Fig. 7
shows two inflection points, which correspond to the inversion
temperatures for the absolute rates (since the other reaction
path is also still in the transition region they are not yet identi-
cal with these).

Fig. 6 Example A

Fig. 7 Example B

A second maximum or inflection point will also be realized if
the inversion temperature for the second reaction path shifts
out of the transition region of the first (example C). In this case
these two points in the relative rate plot will be identical to the
inversion points of the absolute rate plots. Although a common
inversion point for the relative rates formally could still be
determined, it is obviously meaningless since the two reaction
paths change the rate-determining step independently of each
other.

Conclusions
The isoinversion principle focuses on the quantitative evalu-
ation of non-linear Eyring behaviour. Ridd has already pointed
out general problems with this process, which stimulated our
work in this area. We have considered the non-linear relative
rate plots in terms of their absolute rate behaviour.

The important features of the interpretation of relative rate
plots are the ‘transition region width’ and the ‘inversion tem-
peratures’ of the corresponding absolute rate plots. Since the
temperature window normally is too narrow to reach the limit-
ing conditions of the rate law, a relative rate study must be
supported by an absolute rate study for the quantitative
determination of the activation parameters. Otherwise, fatal
misinterpretations could arise, e.g. in the extrapolation to iso-
selective points that lie outside the experimentally accessible
temperature range.

We found that inversion points for relative rates are physi-
cally significant only if  the inversion temperatures for the abso-

Fig. 8 Example C

Fig. 9 Proposed strategy for the evaluation of non-linear Eyring
behaviour
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lute rates are identical. If  the inversion points for the absolute
rates differ, a ‘formal’ isoinversion temperature can still be
defined, but it has no physical meaning.

In the limit of non-overlapping transition regions, not
only one but two extrema or inflection points can occur in the
relative rate Eyring plot. They refer to the inversion points for
each of the two pathways of the absolute rate plots.

Nevertheless, precious information still can be obtained from
the experimental plots. For the optimization of selectivities, the
maximum in the plot still contains the most useful information
since it represents the point with the maximum available select-
ivity. For the purpose of mechanistic interpretations, the
basic experiments should be conducted such that absolute and
relative rate studies are combined. These studies give activation
parameters and information on the inversion points for the
absolute rates. For the evaluation of relative rate studies we
propose the procedure shown in Fig. 9. First, a number of
relative rate studies should be conducted to find examples with
pronounced curvatures. Then the absolute rates for these
examples are determined. The activation parameter and the
inversion temperatures are then evaluated. Using these data, the
other relative rate plots can be fitted. The application of our
theoretical efforts to experimental kinetic data will be presented
in a forthcoming paper.
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